with_seed()
runs code with a specific random seed and resets it afterwards.
with_preserve_seed()
runs code with the current random seed and resets it
afterwards.
Usage
with_seed(
seed,
code,
.rng_kind = NULL,
.rng_normal_kind = NULL,
.rng_sample_kind = NULL
)
local_seed(
seed,
.local_envir = parent.frame(),
.rng_kind = NULL,
.rng_normal_kind = NULL,
.rng_sample_kind = NULL
)
with_preserve_seed(code)
local_preserve_seed(.local_envir = parent.frame())
Arguments
- seed
[integer(1)]
The random seed to use to evaluate the code.- code
[any]
Code to execute in the temporary environment- .rng_kind, .rng_normal_kind, .rng_sample_kind
[character(1)]
Kind of RNG to use. Passed as thekind
,normal.kind
, andsample.kind
arguments ofRNGkind()
.- .local_envir
[environment]
The environment to use for scoping.
See also
withr
for examples
Examples
# Same random values:
with_preserve_seed(runif(5))
#> [1] 0.10169262 0.76999328 0.08906143 0.53659237 0.26213892
with_preserve_seed(runif(5))
#> [1] 0.10169262 0.76999328 0.08906143 0.53659237 0.26213892
# Use a pseudorandom value as seed to advance the RNG and pick a different
# value for the next call:
with_seed(seed <- sample.int(.Machine$integer.max, 1L), runif(5))
#> [1] 0.5885083 0.3289879 0.4357050 0.2184870 0.3697503
with_seed(seed, runif(5))
#> [1] 0.5885083 0.3289879 0.4357050 0.2184870 0.3697503
with_seed(seed <- sample.int(.Machine$integer.max, 1L), runif(5))
#> [1] 0.6099326 0.6076366 0.4936592 0.6276273 0.5535448